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EXECUTIVE SUMMARY

QUALITY ASSURANCE PROCEDURES FOR
CHIP SEAL OPERATIONS USING

MACROTEXTURE METRICS

Introduction

The Indiana Department of Transportation (INDOT) has

implemented a comprehensive and proactive pavement pre-

servation program to formalize preventive maintenance activ-

ities such as thin surface treatments, crack seal, and chip seal

(seal coat) and to determine the optimum balance between

preventive maintenance expenditures and capital expenditures.

It is anticipated that in FYs 2017–21, INDOT’s six districts will

altogether perform approximately 1,500 lane miles of chip seal

work each year. It has been recognized that the quality of chip

seal relies to a great extent on the qualities of binder and

aggregate, proper application rate, construction, and existing

pavement condition. To ensure successful chip seals, INDOT

has implemented special quality assurance (QA) procedures,

i.e., Activity 2050 Mainline Seal Coat Quality Assurance

Evaluation (MSQA) that allows INDOT maintenance engineers

to assess the quality of a new chip seal based on visual inspec-

tion of two 1,000-foot sections selected from a chip seal project

(INDOT, 2014).

However, concerns associated with the MSQA procedures

have been identified by INDOT maintenance engineers. First,

the quality of visual inspection by human eye relies on the

vision, experience, and level of training of the inspector. Issues

may arise over the reliability and validity of visual inspection.

Two randomly selected 1,000-foot-long sections may not fully

represent the overall quality of the chip seal project. Second,

each district usually performs approximately 250 lane miles of

chip seal work every year, which may encompass ten to twenty

different roads. INDOT is currently able to inspect three to five

roads per district per year. Third, visual inspection may become

labor intensive, inefficient, and prone to errors as the current

MSQA requires two visual inspections performed, respectively,

one month and twelve months after construction. In addition,

traveling vehicles may pose a threat to the inspector’s safety

during visual inspection.

In response to the growing concerns about chip seal quality

and consequence and the need to enhance the efficiency of

QA inspection, this study aimed to develop novel concepts and

provide innovative solutions to enhance the current QA practices

over chip seal jobs. Extensive testing was conducted to validate the

concept of using macrotexture measurements to provide a cost-

effective solution to assuring the quality of chip seal construction.

The setup of a texture testing system was evaluated and verified

on both test tracks and actual chip seal projects. Macrotexture

metrics were determined by taking into account the performance

measures for pavement construction. A field test protocol was

developed to implement the QA for chip seal. There is no doubt

that this study will not only ensure alignment between specifica-

tions, performance, and quality of end product, but also improve

customer satisfaction, reduce life-cycle cost, and enhance opera-

tional efficiency.

Findings

Ride quality and safety are two critical performance measures

that have been widely used to evaluate the quality of new

pavement. The former is defined in light of pavement smoothness;

the latter is defined in light of pavement friction. Pavement

smoothness does not change much before and after placing chip

seal, in particular single chip seal. However, chip seal premature

or early failure is commonly accompanied by excessive aggregate

loss or bleeding, or both, which will undoubtedly affect the

surface frictional characteristics of chip seal. The surface of a

failed chip seal tends to become slippery, leading to very low

surface friction. Therefore, surface friction can be utilized as a

performance-focused measure for assessing the quality of new

chip seal.

INDOT conducts pavement friction testing in accordance with

ASTM E274 (2015). This test requires intermittent acceleration or

braking to adjust the speed of the test vehicle, which may impose

significant impacts on traffic flow conditions and safety. In addi-

tion, this test cannot provide a seamless coverage of the road.

Nevertheless, pavement friction varies with surface texture, test

tire, presence of water, and test speed. When conducting friction

testing at standard test conditions, surface texture becomes the

dominant factor affecting pavement friction. Technologies are

currently available to provide continuous texture measurements.

It is advisable to use surface texture instead of friction for quality

assessment or assurance.

Texture depth, spacing, and shape may be used to fully charac-

terize the geometrical properties of a texture profile. To predict

wet pavement friction, however, the mean profile depth (MPD)

of macrotexture was found to be the best depth parameter. Field

test results indicate a strong exponential relationship between

MPD and friction exists, and MPD and friction variations follow

a similar trend. It is evident that MPD is the best macrotexture

metric to assess the surface friction, and therefore the quality of

chip seal.

Field visual inspection revealed that bleeding and tracking

are commonly found in the wheel paths, either in one wheel path

or two wheel paths. Nevertheless, there are evident differences

between the texture characteristics in the right and left wheel

paths, due to the spatial variability of texture or the nature of

pavement surface. Cumulative frequency distribution (CFD)

provides an easy way to visualize large texture data sets

and detect the small differences in the distribution of texture

measurements.

Implementation

The following recommendations are made for future imple-

mentation:

N Use of two point lasers, one for each wheel path, is needed

and anticipated to acquire the necessary information for

evaluating the characteristics of texture profiles and

capturing the spots of bleeding or tracking in both wheel

paths.

N It is rational to perform texture testing in both directions

for the quality assurance of chip seal. However, texture

measurements made in one direction can provide sufficient

information for the quality assurance of chip seal, which

may be justified if resources are limited.

N Chip seal in the driving lane may experience higher

variability than that in the passing lane. Therefore, the

texture depths in the driving lane may yield more strict

standards for the quality assurance of chip seal.

N The current two QA inspections performed after one month

and twelve months of service can be combined into a single,

one-time QA inspection that should be conducted after the

first snow season and can ensure both safety and quality.



However, visual inspection is still necessary to identify

problems earlier when corrective actions can still be taken

and to avoid the consequence due to immediate and

dramatic loss of surface friction. It is recommended that

visual inspection should be conducted before applying

fog seal.

N Chip seal QA can be measured in terms of the macrotexture

metrics such as MPD and attribute percentile values.

Although three equations have been developed to accom-

plish this, the equation below may yield the best estimation.

MSQA~78:023z13:602|MPD{0:011|Truck{0:1716|

Length
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1. INTRODUCTION

1.1 Background

1.1.1 Problem Statement

The Indiana Department of Transportation (INDOT)
has implemented a comprehensive and proactive pave-
ment preservation program to formalize preventive
maintenance activities such as thin surface treatments,
crack seal, and chip seal (also known as seal coat), and
determine the optimum balance between preventive
maintenance expenditures and capital expenditures. To
date, most INDOT pavement preventive work has been
performed by INDOT maintenance crews. In fiscal
year (FY) 2016, the pavement preservation projects by
contractors, typically involving heavier treatments on
higher traffic volume roadways, totaled approximately
262 lane miles. By contrast, INDOT maintenance crews
completed more than 1,400 lane miles of chip seal. In
particular, INDOT maintenance crews chip sealed more
than 7,400 lane miles of pavement in the past five fiscal
years (FYs 2012–16), more than 80% of the total lane
miles of preservation work (excluding crack seal).

Successful chip seal relies to a great extent on the qual-
ities of binder and aggregate, proper application rate,
construction, and existing pavement condition. Special
attention has also been directed toward identifying
laboratory and field tests that can be correlated with
successful chip sealing practice (Gransberg & James,
2005). To ensure a successful chip seal job, INDOT
Maintenance Management and District Support has
also developed special procedures, i.e., Activity 2050
Mainline Seal Coat Quality Assurance Evaluation
(INDOT, 2014), to assist districts’ maintenance crews
in assessing the quality of chip seal. Poor quality con-
trol tends to affect chip seal performance due mainly to
aggregate loss or bleeding, or both. Excessive aggregate
loss or bleeding may cause a catastrophic failure of
chip seal, which requires prompt repairs or remedial
actions. It is anticipated that in FYs 2017–21, INDOT’s
six districts will altogether perform approximately
1500 lane miles of chip seal work each year. A rapid
and practical field test will facilitate INDOT main-
tenance crews to ensure the success of chip sealing
more efficiently.

In response to the growing concern about chip seal
quality and consequence, this study aimed at develop-
ing novel concepts and innovative solutions that could
allow INDOT to enhance the current QA practices over
chip seal jobs. In addition, there is no doubt that this
study will not only ensure alignment between specifica-
tions, performance and quality of end product, but also
improve customer satisfaction, reduce life-cycle cost,
and enhance operational efficiency.

1.1.2 Research Objectives

The primary objective of this study is to validate the
concept of using macrotexture measurements to pro-
vide a cost-effective solution to assuring the quality of

chip seal construction. The secondary objectives are:
(1) to develop performance-driven metrics and criteria
for accomplishing the primary objective; and (2) to iden-
tify the best practices to assist INDOT maintenance
crews in further improving the current chip seal opera-
tions and quality control (QC) procedures.

1.2 Research Approach and Scope

To fulfill the objectives of this study, the research
approach used in this study was a combination of phy-
sical measurements (data-driven) and subjective assess-
ment (customer-focused). In addition to final report,
the research scope included six main tasks as follows:

1. Review of the state of the practice. This task presented a
synthesis of the state of the practice regarding QA or
assessment of chip seal, in particular state DOTs’ current
practices such as procedures, field testing, and para-
meters used to assure chip seal quality and performance.

2. Characterization of surface properties. This task examined
the effects of many factors on the quality and perfor-
mance of chip seal and explored the potential relations
between chip seal quality and surface properties. Focus
was on the attributes of surface friction as friction number
(or friction coefficient) and texture mean profile depth
(MPD).

3. Selection of testing system. The test system was selected
by taking into consideration the historical records and
capabilities of the test system, verification test results,
and initial cost. Preference was given to systems capable
of providing both texture and roughness measurements
at multiple positions such as right wheel path and left
wheel path simultaneously. Verification testing was con-
ducted on both the INDOT friction test track and actual
chip seals.

4. Field testing and inspection. Extensive field testing was
carried out to provide macrotexture and friction meas-
urements in the selected chip seal sections. Visual inspec-
tion was also performed to provide assessment of chip
seal quality. The selection of chip seal sections was care-
fully made in consultation with SAC members and
districts maintenance managers. The factors considered
when selecting the test sections include, but were not
limited to aggregate type and size, application rate, traffic
level, service time, and perceived quality.

5. Data processing and analysis. This task included three
subtasks. The first subtask was data processing, in parti-
cular macrotexture test data processing. Default, proven
procedures were employed to remove extreme values
such as spikes in the measurements due to inherent system
errors. The second subtask focused on the establishment
of texture profiles that may represent the true surface
texture profiles. The third subtask was to perform statis-
tical analysis to examine the variability of chip seal sur-
face texture and determine the statistical summaries of
surface texture, such as mean, standard deviation and
boundaries, from chip seal projects statewide. Cumulative
frequency analysis and hypothesis test were also per-
formed to detect the possible differences between texture
attributes and validate system setup and test protocol.

6. Macrotexture metrics and test protocol for chip seal QA.
This task was to establish and verify macrotexture metrics
for implementing QA over chip seal. The macrotexture
metrics were determined according to the test and analysis

Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2018/12 1



results obtained in the previous tasks and can be readily
verified. The field test protocol should be compatible
or consistent with the test device proposed for check-
ing the smoothness of a new pavement and be readily
implemented.

2. CHIP SEAL QUALITY ASSURANCE AND
TEXTURE METRICS

2.1 Current Practice for Chip Seal Quality Assurance

2.1.1 Potential Chip Seal Failure and Indicators

Many factors, such as asphalt binder, aggregate, existing
pavement condition, weather, and construction opera-
tion, have been considered in the design and construc-
tion of chip seal. While INDOT has developed guidelines
to implement quality control over the selection of materials,
determination of application rate, equipment calibra-
tion, and construction operation (Lee & Shields, 2010),
chip seal design, in particular application rate, may vary
from road to road and project to project due to the
variations associated with the factors that affect the
success of a chip seal job. In addition, personnel exp-
erience and judgment has to some extent played an
important role in achieving chip seal success. There-
fore, the risk of chip seal failure may still exist as demon-
strated by the chip seal project on SR-10 shown in
Figure 2.1.

The failure, in particular premature failure of chip
seal, is usually accompanied by excessive aggregate loss
or bleeding, or both that tend to result in dramatic
reduction in surface friction and vehicle damage (Li,
Shields, Noureldin, & Jiang, 2012). To enhance the
retention of aggregate, INDOT Maintenance Manage-
ment and District Support has accepted a standard
practice to apply a fog seal on a new chip seal after the
final sweeping, commonly a couple of days after the
road seal is opened to traffic. However, it was demon-
strated that in Figure 2.2, there is nothing to guarantee
that the application a fog seal on a new chip seal can
always improve aggregate retention, in particular over
the long term.

2.1.2 Current INDOT Practice

Mainline Seal Coat Quality Assurance Evaluation,
hereafter referred to as MSQA, is currently utilized by
INDOT maintenance crews to assess the quality of a
new chip seal. MSQA consists of eight elements, of
which four, including Observations 1, 4, 5 and 7, are
related to either aggregate loss or bleeding as shown in
Figure 2.3. MSQA allows INDOT to assess the quality
of a new chips seal based on visual inspection of the
chip seal surface. When performing visual inspection,
two 1000-foot-long sections, designated as S1 and S2
(see Figure 2.3), are randomly selected from a chip seal
project, and inspected independently. The inspection
scores for each observation on the two sections are
averaged and rounded to one decimal place. The sum of
the average scores for all eight observations is used to
rate the quality of the chip seal project. The perfect
score for each observation item varies from 5 to 20
points and the total score ranges from 0 to 90 for the
chip seal project. So far, MSQA has played a critical
role in improving the qualities of material and work-
manship incorporated in chip seal work and assuring
that the performance of a new chip seal is in close
conformity with the requirement.

However, there are three concerns associated with the
above procedures. Firstly, the quality of visual inspec-
tion by human eye relies on the vision, experience (or
knowledge), and level of training of the inspector. Issues
may arise over the reliability and validity of visual inspec-
tion, particularly on a small scale. Travelling vehicles
may pose a threat to the inspector’s safety during visual
inspection. Secondly, two randomly selected 1000-foot-
long sections may not fully represent the overall quality
of the chip seal project, particularly when it is several
miles in length. Lastly, each district usually performs
approximately 250 lane miles of chip seal work every
year, which can encompass ten to twenty different roads.
Currently we are only able to MSQA three to five roads
per district per year. Visual inspection may become labor
intensive, inefficient, and prone to errors as the current
MSQA requires two visual inspections performed, respec-
tively, one month and twelve months after construction.

Figure 2.1 Photo of chip seal experiencing aggregate loss. Figure 2.2 Close-up of chip seal with fog seal.
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2.2 Selection of Texture Metrics

2.2.1 Measures of Chip Seal Quality

Ride quality and safety are two critical pavement
performance measures that have been widely used to
evaluate the quality of new pavement. The former is
commonly defined in light of pavement smoothness; the
latter is often defined in light of pavement friction.
Currently, INDOT quantifies pavement smoothness as
International Roughness Index (IRI) and pavement
friction as friction number (FN). It was found else-
where that pavement smoothness does not change
much before and after chip seal due to that chip seal, in
particular single chip seal, is not thick enough to affect
the profile of road surface (Lee, Ahn, Shields, Harris, &
Li, 2013). This may imply that pavement smoothness
may not be related to the quality of new chip seal. As
pointed out earlier, chip seal premature or early failure
is accompanied by excessive aggregate loss or bleeding,
or both, which will undoubtedly affect the surface fric-
tional characteristics of chip seal treatment. On the one
hand, the surface of a failed chip seal tends to become
slippery, leading to very low surface friction. On the other
hand, chip seal is also a pavement preservation treatment
commonly used to restore surface friction that is one of
the critical pavement performance measures. Therefore,
surface friction can be utilized as one of the measures for
assessing the quality of new chip seal.

INDOT conducts pavement friction testing in acc-
ordance with ASTM E274 (ASTM, 2015). However,
safety concerns may arise during field testing on high-
way facilities (Li, Noureldin, & Zhu, 2010). This is
because when conducting friction testing on roadways,
it requires intermittent acceleration or braking to adjust
the speed of test vehicle, which may impose significant
impact on the traffic flow conditions. In addition, the
ASTM E274 test method cannot provide a seamless
coverage of the road. Each friction test yields a friction
number that is the average of friction resistance over
a segment of approximately 60,90 feet long. Pave-
ment friction varies with pavement texture, test tire,
presence of water, and test speed. When conducting
friction testing at standard test conditions, pavement
texture becomes the dominant factor affecting pave-
ment friction. Pavement texture is a physical aspect
of the visual appearance of pavement surface and is
independent of test conditions, such as tire and speed.
Moreover, technologies are commercially available
right now to provide continuous texture measurements.
It is advisable to use pavement texture measurements,
instead of surface friction measurements, for quality
assessment or assurance.

2.2.2 Characterization of Pavement Texture

Pavement surface texture is generally divided
into three groups in the Permanent International

Figure 2.3 Activity 2050 excel worksheets (INDOT, 2014).
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Association of Road Congress (PIARC, 1987) inter-
national experiment below:

1. Microtexture: Wavelength , 0.5 mm (peak to peak
amplitudes: 0.001,0.5mm)

2. Macrotexture: Wavelength 5 0.5,50 mm (peak to peak
amplitudes: 0.01,20mm)

3. Megatexture: Wavelength 5 50,500 mm (peak to peak
amplitudes: 0.1,50mm)

4. Unevenness: Wavelength . 500 mm

It has been recognized that microtexture and macro-
texture are the two texture components that ultimately
determine wet-pavement friction. Macrotexture varies
with the mix properties, in particularly voids, aggregate
(size, shape and gradation), and surface finishing, and
can be readily measured at highway speeds. Micro-
texture, however, relies mainly on the surface feature
of aggregate particle, and is measured using a surro-
gate. It was reported in the PIARC experiment that

microtexture mainly affects wet pavement friction at
low speeds and macrotexture becomes the dominant
factor above 60 km/h. The above can be extended to
conclude that it is reasonable to use macrotexture
measurements to assess pavement friction. Currently,
the macrotexture of pavement surface is characterized
by a single parameter, i.e., the so-called mean profile
depth (MPD) as follows (ASTM E1845-15, 2015):

MPD~ 1
N

PN

i~1

MSDi ð2:1Þ

in which, N is the total number of 100-mm long
segments in the test section, and MSD is the mean
segment depth of a 100-mm texture profile as illustrated
in Figure 2.4, and is computed as the mean depth of the
two peaks.

Fundamentally, surface texture is the composite of
certain deviations that are typical of the real surface

Figure 2.4 Illustration of procedures for computing mean segment depth (ASTM E1845-15, 2015).

Figure 2.5 Correlation between FN and MPD made on different pavements.
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Figure 2.6 Variations of FN and MPD on new chip seal.

consisting of both peaks and valleys (ASME B46.
1-2009, 2009). To fully measure the characteristics of a
texture profile for surface friction, three geometrical
parameters, including texture depth, spacing, and shape,
are commonly used to characterize the geometrical
properties of texture profile. To predict wet pavement
friction, however, the mean profile depth (MPD) of
macrotexture was found to be the best depth parameter
(Henry, 2000; PIARC, 1987). In reality, the authors
have made both friction and texture measurements on
various types of pavements as shown in Figure 2.5. It is
shown that there exists a strong exponential relation-
ship between MPD and FN at 40 mph using a smooth
tire. The authors also measured both friction and MPD
on a new chip seal (see Figure 2.6). Overall, MPD and
FN variations followed a similar trend. Evidently, MPD
is the best macrotexture metric to assess the surface
friction, and therefore the quality of chip seal.

3. TESTING SYSTEM SETUP AND
VERIFICATION

3.1 Setup of Testing System

3.1.1 Texture Measuring Instrument

Many noncontact profiling technologies, such as
optical focus sensing and laser triangulation, are readily
available for measuring surface texture profiles. To
develop and validate the concept of using the MPD of
macrotexture profile in assessing surface friction, and
therefore assuring the quality of chip seal construction,
the selection of texture measuring instrument was made
by taking into consideration the many factors such
as test speed, continuous measurement, accuracy, cost,
and proven track record. Eventually, a laser-based
instrument, as shown in Figure 3.1, was selected for
field experimental studies. This instrument consists of a
high-speed texture 100 kHz point laser that utilizes the
triangulation methods and is capable of measuring

macrotexture profiles at highway speeds. The detailed
information about the specifications for the laser sensor
can be found elsewhere (Ames Engineering, n.d.).

To verify the accuracy of the selected high-speed
texture point laser, texture measurements were made
using both the point laser and a portable 1 kHz laser
texture scanner on three different pavements in the
INDOT friction test track that is not open to traffic as
shown in Figure 3.2. The three pavements, i.e., PCC1,

Figure 3.1 Point laser texture measuring instrument.

Figure 3.2 Close-ups of three different surfaces.
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HMA1, and HMA2, are transversely tined concrete
pavement, 9.5-mm HMA pavement constructed in 2013,
and 9.5-mm HMA pavement constructed in 2002, res-
pectively. Notice that during testing, the 100 kHz point
laser yields a single continuous texture profile that
defined the MPD for each pavement surface. The
1 kHz laser texture laser that has been validated else-
where (Li et al., 2010), however, scans a surface area of
approximately 4.250 6 2.8350 that is used to calculate
the MPD. Presented in Table 3.1 are the average MPD
values for these four different surfaces. It is shown that
the MPD values measured using the two laser instru-
ments, although there are some differences, are very
close to each other.

3.1.2 System Setup

It has been recognized that the point laser can only
produce a single texture profile that may not fully

represent the true texture characteristics of a surface.
Because of this, a number of point lasers may be req-
uired to yield more representative results. However,
determination of the number of point lasers is not a
pure science. In addition, the high-speed texture laser is
currently expensive. As practical field trials, two point
lasers were considered to simultaneously acquire texture
profile data in the left and right wheel paths, respec-
tively. The setup for the test system consisting of two
point lasers is illustrated in Figure 3.3. In reality, it can
be seen that in Chapter 2, the current chip seal field
QA procedures, i.e., MSQA, include inspection of both
longitudinal bleeding and tracking in the wheel paths.
Field visual inspection also revealed that bleeding and
tracking are commonly found in the wheel paths, in
either one wheel path or two wheel paths as shown
in Figure 3.4. Therefore, the use of two point lasers,
one for each wheel path, is anticipated to acquire the
necessary information for evaluating the characteristics
of texture profiles and capturing the spots of bleeding
or tracking in both wheel paths.

3.2 Track and Field Verifications

3.2.1 Verifications on INDOT Friction Test Track

Test trials were made to validate the system setup for
acquiring texture profiles in the four pavement sections
in the INDOT friction test track (see Figure 3.2). PCC2
is a concrete pavement with very smooth surface. Cum-
ulative frequency distribution (CFD) was utilized to
provide insight into the differences between the MPD
measurements in the right and left wheel paths due
to two main reasons. CFD provides an easy way to
visualize large data sets and detect the small differences
in the distribution of texture measurements. Second,
peculiarities in the distribution can be easily perceived
from the shape of cumulative frequency curve. Gener-
ally, a steep curve corresponds to close texture meas-
urements, which may indicate a uniform surface.
A flat curve, however, corresponds to texture values
with high variability, which may suggest a non-uniform
surface. As a result, the texture attribute values cor-
responding to a specific percentile such as the 25th,

TABLE 3.1
MPD Values Measured Using Different Laser Sensors

Texture Instrument PCC2 HMA1 HMA2

100 kHz Point Laser

1 kHz Laser Scanner

1.583

1.522

0.761

0.694

1.199

1.322

Figure 3.3 Photo of laser setup for acquiring texture data.

Figure 3.4 Possible positions of bleeding and tracking in chip seal.
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50th, or 75th percentile can be identified and examined
to possibly yield meaningful insights into the quality of
a chip seal.

Figure 3.5 presents the CFD curves of the texture
values measured over a 100-foot-long segment in the
four pavement sections, respectively. In viewing the
CFD curves, attention should be given to the shift and
shape. A shift to the right indicates increase in texture
depth. The CFDs for PCC1 show the steepest slope and
much steeper than the CFDs for PCC2. The CFD curves
for HMA1 are also steeper than the CFD curves for
HMA2. One possible explanation is that HMA1 was
constructed in 2013 and HMA2 was constructed in
2002. The former has not experienced raveling and the
latter has experienced medium to severe raveling that
has resulted in greater variability in surface texture.
This implies that the CFD attributes may be utilized to
evaluate the variability of surface texture. Second, there
are evident differences between the CFD curves for the
right and left wheel paths, regardless of the type of pave-
ment. Again, this confirms that two point lasers, one
for each wheel path, is needed to acquire the necessary
information for determining the characteristics of surface
texture.

3.2.2 Verifications on Actual Chip Seals

An original thought was that the differences between
the texture measurements in the two wheel paths could
be due to the spatial variability of texture or the nature
of pavement surface, rather than the inherent errors
of the testing system. To validate this thought, field
testing was conducted to make texture measurements in
the two wheel paths, over actual chip seals on SR-47,
US-41, and US-136, respectively, by switching the two
lasers. Figure 3.6 shows the CFDs for the texture meas-
urements before and after switching the two lasers.
Table 3.2 presents the statistical summaries of the text-
ure measurements, including mean (MPD), standard

deviation (Std Dev), and relative error, made before
and after switching the two lasers. In all cases except
for the left wheel path, US-136 eastbound and the right
wheel path, US-41 southbound between RP 171 and
174, the before and after CFDs not only exhibit the
same shape, but also are located approximately at the
same position. The relative errors are 2.0% or less.

Statistical hypothesis tests were conducted to further
verify whether there is any significant difference between
the MPD values before and after switching lasers. The
two assumptions first checked are whether the two
samples are independent and whether the two samples
follow the normal distribution. Since two lasers were
always testing the same wheel path, the two samples
should be inherently dependent. The Q-Q plot, which
compares observed quantiles of MPD with quantiles
of the normal distribution, is an intuitive graphical
technique to detect the normality of a sample dataset.
As shown in Figure 3.7, the x-axis of both Q-Q plots
represents the normal quantile and the y-axis stands
for quantiles of the sample data. The data points fall
approximately along the straight reference line. It is
likely that the sample follows the normal distribution.

Table 3.3 shows the results two normality tests, includ-
ing Shapiro-Wilk and Kolmogorov-Smirnov tests. The
null hypothesis of a normality test is that the sample
does not significantly vary from the normal distribu-
tion. If the p-value is less than 0.05, the null hypothesis
is rejected and the sample is not normally distributed.
If the p-value is larger than 0.05, it fails to reject the
null hypothesis and the assumption is valid. The
Kolmogorov-Smirnov test is more accurate when the
sample size is large, while the Shapiro-Wilk test is com-
monly used when the sample size is small. Based on the
Shapiro-Wilk test, the sample before switching lasers
follows a normal distribution because the p-value is
0.0765. After switching the lasers, the p-value is 0.0492
that is slightly less than 0.05, the sample barely follows
a normal distribution.

Figure 3.5 CFDs for texture measurements on INDOT friction test track.
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There are four methods, such as two sample t-test,
Wilcoxon-Mann-Whitney test, paired t-test, and Wilcoxon
Signed Rank test, available to test two sample means.
Because the two samples are dependent and the

samples follow a normal distribution before switching
lasers and barely follow a normal distribution after
switching lasers, both the paired t-test and Wilcoxon
signed rank test can be used to test the differences

Figure 3.6 CFDs for texture measurements before and after switching lasers.
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between MPD samples before and after switching lasers.
The null hypothesis H0 states that there is no significant
difference of MPD by two lasers, while the alternative
hypothesis Ha states that the difference of MPD is
significant. Table 3.4 shows the basic and test statistics
for the difference of MPD. The p-value is 0.2684 from

paired t-test and 0.7520 from Wilcoxon signed rank
test. Since the p-values for both tests are greater than
0.05, it fails to reject the null hypothesis, the difference
of two sample means is insignificant. Therefore, there is
no significant difference about test results if two lasers
are switched.

TABLE 3.2
Summaries of Texture Measurements before and after Switching Lasers

Road Direction Wheel Path Laser Position MPD (mm) Std Dev (mm) Relative Error (%)

SR-47 West Left

Right

Before Switching

After Switching

Before Switching

After Switching

1.465

1.434

1.349

1.334

0.301

0.298

0.298

0.298

1.86

2.09

US-41a

(RP 163-RP 170)

North

South

Left

Right

Left

Right

Before Switching

After Switching

Before Switching

After Switching

Before Switching

After Switching

Before Switching

After Switching

1.674

1.657

1.662

1.655

1.814

1.813

1.796

1.801

0.449

0.459

0.472

0.454

0.415

0.404

0.410

0.409

1.02

0.42

0.06

-0.28

US-41b

(RP 171-RP 174)

North

South

Left

Right

Left

Right

Before Switching

After Switching

Before Switching

After Switching

Before Switching

After Switching

Before Switching

After Switching

1.720

1.731

1.693

1.709

1.662

1.650

1.705

1.537

0.396

0.406

0.400

0.391

0.437

0.472

0.437

0.493

-0.64

-0.95

0.72

9.85

US-136 East

West

Left

Right

Left

Right

Before Switching

After Switching

Before Switching

After Switching

Before Switching

After Switching

Before Switching

After Switching

1.317

1.402

1.302

1.294

1.390

1.385

1.314

1.304

0.320

0.376

0.34

0.352

0.312

0.315

0.317

0.304

-6.45

0.61

0.36

0.76
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Figure 3.7 Q-Q plots for texture measurements before and after switching lasers.
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4. EXPERIMENTAL FIELD STUDIES

4.1 Spatial Variations of Chip Seal Surface Texture

4.1.1 Variations with Locality

INDOT is divided into six geographical districts
for the purpose of organizing and managing highway
planning, construction, maintenance, traffic, develop-
ment and testing. In addition to differences in weather
conditions, differences also exist between the construc-
tion practices for chip seal by the districts. Table 4.1
shows six chip seal projects that demonstrate different
aggregates and asphalt emulsion binders used by the
six districts. The detailed information on the aggregate
and asphalt emulsion properties can be found else-
where (INDOT, 2017). In addition, different roads
may have different geometric features, undergo differ-
ent traffic applications, and experience different pave-
ment conditions. In the same section of a certain road,
both pavement and traffic conditions may vary from
direction to direction and lane to lane. Therefore, spatial
variations associated with chip seal surface texture
are natural and inevitable. The texture attributes of
chip seal may vary from district to district, road to
road, direction to direction, lane to lane, and location
to location.

Field experimental tests were conducted on a total of
64 chip seal projects completed by five districts, includ-
ing Crawfordsville, Fort Wayne, Greenfield, LaPorte,
and Seymour, in 2017, and the results, including MPD
and standard deviation (Std Dev), are presented in
Figure 4.1. The MPD values for LaPorte District varied
most significantly from road to road, and the MPD
values for Seymour District varied least significantly
from road to road. However, the standard deviations

of texture measurements for Greenfield District varied
most significantly from road to road, and the standard
deviations of texture measurements for LaPorte District
varied least significantly from road to road. Summa-
rized in Table 4.2 are the average values of MPD,
standard deviation, and coefficient of variation (COV)
for all chip seal projects by district, as shown in
Figure 4.2. Overall, the chip seals in LaPorte District
demonstrate the largest texture depth but the lowest
variability, and the chip seals in Seymour District
demonstrate the medium texture depth but the highest
variability.

4.1.2 Variations with Longitudinal Position

To illustrate the variations of chip seal surface text-
ure in longitudinal position, Figure 4.2 shows the text-
ure measurements made in a 1-mile segment from an
8.0-mile long chip seal project on SR-14. As illustrated
in Equation 2.1, the MSD is calculated in terms of
100-mm long segment. There are approximately 16130
MSD values in each wheel path over a 1-mile segment.
Clearly, Figure 4.2 shows the variations and spikes of
MSD values over the entire 1-mile segment. However,
it does not provide detailed and accurate information
to detect the trend of variation and compare the two
MSD datasets from the right wheel path (RWP) and
left wheel path (LWP), respectively. For a several-mile
long chip seal project, in particular, the test dataset
will be very large. It may become more difficult to use
traditional charts to produce conclusive insights.

Instead, this study frequently utilized CFD analysis
as shown in Chapter 3. CFD provides an easy way to
visualize large data sets and detect the small differences
in the distribution of texture measurements. Peculiari-
ties in the distribution can be easily perceived from
the shape of CFD curve. Generally, a steep curve cor-
responds to close texture measurements, which may
indicate a uniform surface. A flat curve, however,
corresponds to texture values with high variability,
which may suggest a non-uniform surface. Plotted in
Figure 4.3 are the CFDs for the same texture measure-
ments as presented in Figure 4.2. It is demonstrated
that the two texture datasets in the right and left
wheel paths are evidently different. The texture depth
ranges approximately between 0.1 mm and 2.2 mm
in the left wheel path (LWP), and between 0.1 mm
and 2.6 mm in the right wheel path (RWP). More
than 95% of the texture depths are approximately
1.25 mm or less. Most importantly, the differences

TABLE 3.3
Normality Test for Two Laser Test Samples

Laser Position Test Method Statistic p-Value

Before Switching Shapiro-Wilk W 0.888334 Pr , W 0.0765

Kolmogorov-Smirnov D 0.209782 Pr . D 0.0924

After Switching Shapiro-Wilk W 0.874885 Pr , W 0.0492

Kolmogorov-Smirnov D 0.248446 Pr . D 0.0196

TABLE 3.4
Test Statistics for the Laser Difference

Number of Observations 14

Mean -0.0159

Standard Deviation 0.0513

Variance 0.0026

Skewness -2.4806

Kurtosis 6.3752

Coefficient of Variation (%) -323.64

Student’s t Statistic, t -1.1561

Student’s t Test p Value 0.2684

Signed Rank Statistic, S -5.5

Signed Rank p Value 0.7520
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Figure 4.1 MPD and standard deviations by road.

TABLE 4.2
Statistical Summaries of Chip Seal Texture Measurements by District

Road Crawfordsville Fort Wayne Greenfield LaPorte Seymour

MPD (mm)

Std Dev (mm)

COV (%)

1.394

0.384

27.5

1.406

0.482

34.3

1.512

0.445

29.4

1.667

0.452

27.1

1.425

0.521

36.6

TABLE 4.1
Typical Materials and Application Rates for Chip Seal by District

Aggregate Asphalt Emulsion

District Road Size Type Rate (lb/yd2) Type Rate (gal/yd2)

Crawfordsville SR-42 SC 16 Gravel 20.0,25.0 AE-90S 0.360

Fort Wayne US-24 SC 16 Dolomite 19.0 CRS-2P 0.370

Greenfield SR-38 SC 11 Limestone 21.3 AE-90S 0.368

LaPorte US-231 SC 16 Gravel 22.3 AE-90S 0.325

Seymour SR-45 SC 11 Dolomite 24.0 CRS-2P 0.378

Vincennes SR-257 SC 11 Dolomite 24.0 AE-90S 0.320
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may be quantified with respect to the differences
between the texture attribute values corresponding
to a specific percentile such as the 25th, 50th, or 75th
percentile.

4.1.3 Variations with Lateral Position

To examine the texture variations with lateral posi-
tion from lane to lane and direction to direction, texture
testing was conducted on six actual chip seals, including
two constructed in 2015 on SR-75 and SR-10, one
constructed in 2016 on US-12, and three constructed in
2017 on US-41 and SR-136. Plotted in Figure 4.4 are
the CFDs for the texture measurements from these
six chip seals. Again, it is demonstrated that there are
evident differences between the texture measurements
in the right and left wheel paths. Careful inspection of
these CFD curves further reveals that for all chip seals
except for the one on SR-136, the two texture datasets

for the two right (or left) wheel paths in both directions
exhibit approximately the same distribution, regardless
of service time. Hypothesis test was also conducted
on the texture measurements. At a confidence level of
95%, the texture dataset from the right (or left) wheel
path in one direction is identical to the texture dataset
from the right (or left) wheel path in the other direction.
The above can be extended to conclude that the texture
measurements in one direction can provide sufficient
information for the quality assurance of chip seal.

Plotted in Figure 4.5 are the CFDs for the texture
measurements made in all lanes over chip seal on a
4-lane, SR-9. In both directions, the CFDs for both the
passing (left) and driving (right) lanes exhibit a similar
trend and shape. However, the CDFs for the driving
lanes shift to the right. This indicates that the texture
depth in the driving lane is generally less than that in
the passing lane, particularly in the right wheel path.
One possible reason is the unequal traffic distribution

Figure 4.2 Texture depth variations on SR-14 eastbound.

Figure 4.3 CFDs for texture measurements on SR-14 eastbound.
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between the driving and passing lanes. Traffic lane
distribution varies with vehicle type and the driving
lane may carry up to 94% of total five-axle semi-trucks
on a four-lane road (Jiang, Li, Nantung, & Chen, 2008).

Table 4.3 presents the statistical summaries of the text-
ure measurements for each lane. On average, the MPD
in the driving lane is 9.0% less than that in the passing
lane. This implies that chip seal in the driving lane may

Figure 4.4 CFDs for texture measurements on six different roads.
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experience higher variability than that in the passing
lane. Texture depths in the driving lane may yield more
strict standards for quality assurance of chip seal.

4.2 Temporal Variations of Chip Seal Surface Texture

4.2.1 Year-to-Year Texture Variations

It is hard to overstate the importance of the timing
for quality assurance inspection for chip seal construc-
tion. The current QA procedures by INDOT consists of
two inspections, including an initial inspection per-
formed one month after construction and a follow-up
inspection performed 12 months after construction.
To verify the current practice, this study examined the
texture variations of chip seal projects over time. Due
to lack of historical texture test data, texture measure-
ments were simultaneously made on chip seals con-
structed by different districts in 2015, 2016, and 2017,
which allows the authors to evaluate the year-to-year
texture variations approximately. In reality, year-to-year
texture variations may eliminate seasonal effects and
provide an effective way to perceive the trends of long-
term texture variations for chip seals. Plotted in Figure 4.6
are the MPD values for chip seals over time by district.

Because texture tests were simultaneously conducted
in 2017, the MPD measurements on chip seals construc-
ted in 2015 were used as surrogate MPDs for chip seals
after two years of service, and the MPDs measured on
chip seals constructed in 2016 were used as surrogate
MPDs for chip seals after one year of service. It is shown
that in Figure 4.6, the MPD values are 0.813 mm,
1.015 mm, and 1.481 mm in 2015, 2016, and 2017,
respectively, over these five districts. On average, the
MPD decreased approximately by 31% from 2017 to
2016, i.e., in the first year, and 20% from 2016 to 2015,
i.e., in the second year. In addition, the MPD in 2016
and 2017 varied more significantly than in 2015. This
indicates that the MPD for a chip seal tends to decrease
over time and the decreasing rate decreases over time.
Therefore, it can be concluded that if surface texture
metrics are utilized for QA of chip seal construction, the
inspection should be performed no later than 12 months
after construction.

4.2.2 Monthly Friction Variations

To provide more precise information on the varia-
tion of chip seal surface texture over time, this study
re-examined the friction test results reported elsewhere

Figure 4.5 CFDs for texture measurements in different lanes.

TABLE 4.3
Statistical Summaries of Texture Measurements by Lane

Direction Lane Wheel Path

Texture Depth (mm)

Min. Max. MPD Std Dev COV (%)

North Left

Right

Left

Right

Left

Right

0.261

0.252

0.190

0.129

3.640

3.816

2.938

3.800

1.037

0.991

0.972

0.862

0.219

0.222

0.204

0.217

21.1

22.4

21.0

25.2

South Left

Right

Left

Right

Left

Right

0.252

0.161

0.306

0.196

4.957

5.824

9.423

4.243

0.892

0.819

0.847

0.721

0.199

0.210

0.176

0.196

22.3

25.6

20.8

27.2
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(Li, Noureldin, Jiang, & Sun, 2012; Li et al., 2017).
Presented in Figure 4.7 and Figure 4.8 are the surface
friction numbers on two types of chip seals such as
single chip seal and single chip seal with fog seal. The
single chip seal with fog seal is a variation of the single
chip seal and involves applying fog seal to the single
chip seal approximately two days later. Field visual
inspections revealed that three chip seals, including two
single chip seals on SR-10 and US-421, and one single
chip seal with fog seal on US-36, had experienced either
excessive aggregate loss, bleeding, or both. Accordingly,
dramatic decreases in friction occurred in these three
chip seals during the first year of service. After around
12 months of service, the friction numbers on these
three chip seals fluctuated around 20 over time.

The friction of chip seal surface experienced greater
variability during the first 12 months. Particularly
during the period of first six to eight months, the trend
of friction variation varied over time and from project
to project. Notice that chip seals are commonly placed
from June to September in Indiana. There are two
advantages associated with the current QA practice by
INDOT. First, the initial QA inspection conducted
after one month of service can detect any pre-mature
failure timely and result in immediate actions. Second,
the follow-up QA inspection conducted after 12 months
of service can detect the potential effect of snow plow and
ensure long-term performance. As shown in Figures 4.7
and 4.8, catastrophic failure that may cause significant
reduction in friction typically occurs after 12 months of

Figure 4.6 Variations of MPD and COV over time by district.

Figure 4.7 Friction variations of single chip seal over time.
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service. In addition, new chip seals will have been in
service for about six to eight months when the first
snow season ends. Consequently, the current two QA
inspections performed after one month and 12 months
of service can be combined into a single, one-time QA
inspection that should be conducted after the first snow
season and can ensure both road safety and chip seal
quality.

4.3 Establishment of Macrotexture Metrics

4.3.1 2017 Chip Seal Projects

To explore and develop the relationships between
objective texture measurements and subjective MSQA
scores, a total of 30 new chip seal projects completed
in 2017 were selected, of which 6 projects were from
Crawfordsville District, 7 projects from Fort Wayne
District, 4 projects from Greenfield District, 3 projects
from LaPorte District, 9 projects from Seymour District,
and one project from Vincennes District. Tabulated
in Table 4.4 are the descriptive statistics of texture
measurements, including sample size, mean (MPD),
standard deviation (Std), minimum value (Min), maxi-
mum value (Max), and various percentiles denoted
by letter ‘‘P’’. For example, P75 stands for the 75th
percentile, that is, 75% of texture data falls below the
value of P75. Because the percentiles may provide
insight into chip seal quality, they were included in the
analysis in addition to MPD and standard deviation.
It should be pointed out that because 15 out of 30 chip
seal projects were rated 100% in terms of MSQA, bias
and complexity could arise associated when correlating
texture measurements to MSQA rating.

Table 4.5 presents the calculated MPD, standard
deviation (Std), confidence interval, and percentiles by
MSQA rating that is divided into five levels at 5-point
interval or three levels at 10-point interval. When the

MSQA rating is divided into 3 levels, the MPDs are
1.412, 1.379, and 1.028 for 100%, 90%,100%, and
80%,90%, respectively. When the MSQA rating is
divided into five levels, the MPD fluctuates within a small
range, but overall decreases as MSQA score decreases.
The confidence intervals are very narrow due to the
large sampling size during texture testing, resulting in
limited information on MSQA rating. It can be con-
cluded that overall, there exists correlation between
MSQA rating and summary statistics such as MPD
and percentile texture attributes.

4.3.2 Analysis of Texture Depth Percentiles by
Principal Component Analysis

The MPD, texture Standard Deviation, texture P10,
P25, P50, P75, and P90 in Table 4.4 are all summary
statistics from texture measurements and correlations
may exist among these variables. Pearson correlation
coefficients were calculated to measure the relationships
between these variable as shown in Figure 4.9. All text-
ure percentile variables (P10 to P90) in the correlation
matrix are positively correlated. Strong correlations
(j jr w0:8) and moderate correlations (0:4vj jr v0:8) are
found for most pairs of variables. However, the standard
deviation (Std) has weaker relationships with some per-
centiles (r,0.4) . Due to the collinearity among MPD,
P10, P25, P50, P75, and P90, interpretation can be
difficult if all of them are included in the regression
model, but more predictor variables usually contain
more information.

Principal component analysis (PCA) was used to deal
with the above dilemma. PCA is a widely used dimen-
sionality reduction technique to reduce a larger set of
correlated variables to a smaller set that contains most
of the information in the larger set (Jolliffe, 2002).
In short, PCA is performed on the correlation matrix or
covariance matrix of the existing p variables (i.e., P10 to

Figure 4.8 Friction variations of single chip seal with fog seal over time.
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P90 here), represented by. X ’~½X1,X2,:::,Xp� The cal-

culated eigenvalue-eigenvector pairs from can be exp-
:::ressed as, (l1,e1),(l2,e2),:::,(lp,ep), where. l1§l2§

§lp§0. Thus, the ith principal component (PC) can be

denoted as Yi~ :::e’iX~ei1X1zei2X2z zeipXp with

properties, Var(Yi)~e’i
X

ei~li and Cov(Yi,Yk)~

e’i
P

ek~0, where i51,2,…,p and i ?k. Therefore,

PCs are uncorrelated linear combinations of existing

p variables with variances equal to the eigenvalues of S.

Larger eigenvalue means more information is explained

by the PC, so it is reasonable to keep only a few PCs
because most of information has been explained by them.

As shown in Tables 4.6, PCA was performed on
scaled variables, P10, P25, P50, P75, and P90. The
standard deviation is the square roots of the eigenvalues
(li) and the Total Variance5Sli 55. The first PC
explains 94.81% of the total variance and the second
PC explains 4.96% of total variance. Since the first
two PCs already account for 99.77% of total variance,
the rest of PCs can be dropped in the later anal-
ysis. By carefully examining the coefficients of existing

TABLE 4.4
Statistical Summary of 2017 Chip Seal Projects

District* Road QA IRI N MPD Std Min. Max. P10 P25 P50 P75 P90

CF SR157a 95 115.41 318227 1.446 0.380 0.238 5.662 0.991 1.177 1.411 1.679 1.948

CF SR157b 98 119.19 318899 1.317 0.364 0.001 9.100 0.884 1.096 1.310 1.540 1.772

CF SR236 100 84.58 320000 1.496 0.305 0.308 8.573 1.130 1.282 1.471 1.682 1.895

CF SR32 100 84.4 658593 1.645 0.445 0.176 9.856 1.108 1.354 1.625 1.919 2.209

CF SR47 91 64.84 324780 1.364 0.300 0.263 4.120 1.003 1.155 1.340 1.548 1.758

CF US136 95 98.66 323601 1.330 0.324 0.173 9.823 0.953 1.111 1.305 1.522 1.744

FW SR124 100 71.3 194920 0.919 0.288 0.203 5.990 0.580 0.711 0.887 1.092 1.297

FW SR14 100 89.62 368528 1.182 0.364 0.123 7.050 0.729 0.929 1.161 1.407 1.648

FW SR16 100 119.08 573529 1.710 0.433 0.231 9.220 1.180 1.409 1.683 1.982 2.276

FW SR18 100 94.19 146406 1.525 0.419 0.160 8.750 0.991 1.278 1.531 1.786 2.032

FW SR427 100 102.25 393355 1.234 0.453 0.148 7.567 0.671 0.916 1.199 1.506 1.822

FW SR5 100 93.65 802809 1.479 0.514 0.165 9.970 0.809 1.117 1.464 1.817 2.150

FW SR9 83 93.99 640940 0.893 0.227 0.129 9.423 0.618 0.735 0.876 1.030 1.185

GF SR13 95 82.56 127520 1.405 0.344 0.192 9.332 1.002 1.188 1.391 1.613 1.836

GF SR213 100 99.24 125692 1.238 0.305 0.184 8.548 0.893 1.032 1.205 1.409 1.627

GF SR234 85 77.92 192318 1.069 0.258 0.211 7.223 0.765 0.891 1.046 1.221 1.403

GF SR28 83 91.04 180017 1.017 0.279 0.008 9.976 0.709 0.834 0.989 1.165 1.352

LP SR331 100 79.19 256520 1.528 0.331 0.391 7.267 1.136 1.298 1.500 1.726 1.955

LP SR39 100 93.61 150460 1.249 0.328 0.221 3.590 0.833 1.044 1.250 1.458 1.657

LP US231 100 82.43 420218 1.685 0.479 0.205 6.685 1.090 1.370 1.670 1.986 2.296

SM SR156 91 94.62 1087559 1.384 0.448 0.001 9.968 0.836 1.060 1.354 1.665 1.965

SM SR160 100 141.41 335766 1.401 0.344 0.151 9.993 1.005 1.171 1.370 1.596 1.832

SM SR250a 98 134.84 331096 1.265 0.314 0.001 9.252 0.904 1.053 1.234 1.440 1.659

SM SR250b 95 159.26 69954 1.265 0.346 0.119 5.020 0.869 1.030 1.226 1.457 1.701

SM SR252 95 134.87 177700 1.344 0.361 0.162 5.309 0.913 1.096 1.320 1.562 1.798

SM SR45a 94 134.21 736556 1.464 0.463 0.001 9.673 0.915 1.147 1.426 1.737 2.053

SM SR45b 100 76.45 328810 0.921 0.270 0.119 9.487 0.622 0.765 0.908 1.061 1.225

SM SR46 100 59.61456 152586 0.733 0.260 0.139 8.115 0.495 0.571 0.675 0.821 1.035

SM US421 88 75.89 256700 1.345 0.336 0.251 5.292 0.942 1.114 1.319 1.547 1.780

VC SR257 95 102.4 286059 1.379 0.311 0.248 9.646 1.011 1.174 1.361 1.566 1.771

*CF, Crawfordsville; FW, Fort Wayne; GF, Greenfield; LP, LaPorte; SM, Seymour; VC, Vincennes.

TABLE 4.5
Statistical Summary of Texture Depth Grouped by MSQA Rating

MSQA

Level MSQA Range N MPD Std

Lower

Bound

Upper

Bound P10 P25 P50 P75 P90

5 Levels 100

95#MSQA,100

90#MSQA,95

85#MSQA,90

80#MSQA,85

5228192

1953056

2148895

449018

820957

1.412

1.347

1.408

1.226

0.920

0.488

0.348

0.436

0.334

0.245

1.412

1.346

1.408

1.225

0.919

1.413

1.347

1.409

1.227

0.921

0.786

0.940

0.884

0.833

0.633

1.067

1.115

1.108

0.989

0.754

1.392

1.321

1.375

1.191

0.899

1.723

1.552

1.669

1.426

1.061

2.045

1.789

1.967

1.667

1.227

3 Levels 100

90#MSQA,100

80#MSQA,90

5228192

4101951

1269975

1.412

1.379

1.028

0.488

0.398

0.316

1.412

1.379

1.028

1.413

1.379

1.029

0.786

0.912

0.673

1.067

1.112

0.809

1.392

1.346

0.983

1.723

1.610

1.199

2.045

1.885

1.444
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variables for each PC in Table 4.6, the first two
principal components can be expressed as follows:

PC1~{0:4296 � P10{0:4540 � P25{0:4584�

P50{0:4523 � P75{0:4411 � P90

PC2~{0:7019 � P10z0:2873 � P25{0:0744�

P50{0:3453 � P75{0:5478 � P90

Since it is still difficult to interpret PC1 and PC2,
other variables are considered to replace PC1 and PC2
into the final regression model. However, examining the
coefficients in PC1 and PC2 calculations revealed that
PC1 is essentially a sum of P10 to P90. The coefficients
in PC1 are quite close, and in fact, none of variables

contributes significantly more than the others. If the
distribution of measured texture depth is symmetric
and unimodal, PC1 can be expressed as a function of
P50, which is the sample mean (MPD) in essence. PC2
is a weighted difference from P10 to P90, in which the
weight of P50 is significantly smaller than the others.
After carefully examining the form of PC2, the initial
speculation is that Interquartile Range (IQR) may be
used to represent PC2. IQR, used as a measure of sample
variability, is the difference between P75 and P25 repre-
senting the range of middle 50% of sample. To further
demonstrate relationship between PC1 and MPD and
between PC2 and IQR, scatter plots are made as shown
in Figure 4.10.

It is shown that in Figure 4.10, strong linear relation-
ships exist between PC1 and MPD and between PC2
and IQR. The coefficient of determination, R2 is 0.9998
for PC1 and MPD, and 0.9887 for PC2 and IQR.

Figure 4.9 Correlation matrix for MPD, standard deviation, and percentiles.

TABLE 4.6
Results of Principal Component Analysis

Variable PC1 PC2 PC3 PC4 PC5

Standard Deviation 2.1773 0.4978 0.1030 0.0329 0.0073

Proportion of Variance (%) 94.81 4.96 0.21 0.02 0.00

Cumulative Proportion (%) 94.81 99.77 99.98 100.00 100.00

P10 Coefficient -0.4296 0.7019 0.5200 0.2167 0.0735

P25 Coefficient -0.4540 0.2873 -0.4645 -0.5809 -0.3978

P50 Coefficient -0.4584 -0.0744 -0.4598 0.1870 0.7334

P75 Coefficient -0.4523 -0.3453 -0.0906 0.6199 -0.5326

P90 Coefficient -0.4411 -0.5478 0.5423 -0.4432 0.1217
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Therefore, it is reasonable to replace PC1 and PC2
by MPD and IQR for modeling without losing key
information. Further relationship check was conducted
for IQR and texture depth Standard Deviation. As
shown in Figure 4.10 (c), strong linear relationship was
detected as well between IQR and Standard Deviation.
The R2 for these two variables is as high as 0.9518,
indicating that either one of them can be used for
modeling. The texture depth Standard Deviation is
used for later analysis for simplicity. It should be noted
that the findings in this chapter are purely based on
the dataset used in this study, and IQR and Standard
Deviation are not always used interchangeably.

4.3.3 Regression Model Development

In Table 4.4, the dataset contains information of
30 chip seal projects. However, 15 out of 30 projects
have MSQA equal to 100. The measured MPDs among
these 15 projects vary greatly ranging from 0.73 to 1.71.
The dispersion of MPD for projects with MSQA equal
to 100 is understandable because visual inspection is
a subjective evaluation method. When the pavement
surface is free of obvious distresses, it is hard for the
inspection crew to accurately estimate the character-
istics of surface texture. Due to the uncertainty of MPD

in projects with MSQA of 100, projects with MSQA
equal to 100 are not included in the regression model.
Because texture measurements were conducted for
both wheel paths on both directions, there are a total
of 15*4 5 60 data entries in the final dataset. Each
data entry has 10 variables, among which there are
7 continuous variables and 3 categorical variables as
shown in Table 4.7. The continuous variables are mainly
related to texture measurements, traffic, and MSQA
rating. The categorical variables include the type of
chip, traffic direction, and laser sensor position.

Moreover, the MSQA rating is used as dependent/
response variable predicted by other independent/explan-
atory variables in the dataset. The multiple linear regres-
sion by the method of Ordinary Least Squares (OLS)
was conducted to estimate the model and the estimated
model parameters are shown in Table 4.8. To test the
significance of explanatory variables and the overall
goodness of fit, a commonly used significance level (a)
of 5% was utilized. The initial model which includes
all the variables has a F-statistic of 14.73 with P-value
less than 0.0001 indicating that comparing to the null
model (all regression parameters are zero), a significant
linear relationship exists between MSQA and other
variables. The measures of how well the model fits the
data (goodness of fit) include R2 and adjusted R2,

Figure 4.10 Scatter plots among PC1, PC2, MPD, IQR, and standard deviation.
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which are 0.7261 and 0.6768 respectively. The inter-
pretation of R2 which is equal to 0.7261 is that the
model can explain 72.61% of the variability in the
response variable MSQA.

In addition, by looking at the p-value for each variable
in the initial model, one can identify that MPD, Truck,
and Road Length are the significant variables with
p value less than 5%. It is also found that AADT is
insignificant, but Truck is significant. This can be
explained because the effect of passes by truck on the
embedment of aggregate in the chip seal is greater than
that by passenger cars. The manipulation of trucks is

one of reasons response for chip seal failures. In addi-
tion, all categorical explanatory variables including the
type of aggregate, testing road direction, and laser
sensor position are insignificant. To interpret the model
parameters, the initial model was refined by conducting
the regression with only the significant variables: MPD,
Truck, and Road Length. This final model is presented
in the lower part of Table 4.8. The F-statistic of the final
model is 42.74 with p-value less than 0.0001, so the
linear relationship between response and explanatory
variables are still significant. R2 in the final model
dropped slightly to 0.696 as well as adjusted R2 to

TABLE 4.7
Summary of Variables for Modeling

Variable Name Variable Description

MPD Mean profile depth (mm), continuous variable

Std Dev Texture depth standard deviation (mm), continuous variable

AADT Average annual daily traffic, continuous variable

Truck The number of truck in AADT, continuous variable

MSQA Seal coat quality assurance evaluation (total of 100 points adjusted for surface distress related only), continuous

variable

Speed Measured 85th percentile speed (mph), continuous variable

Length Length of measured road segment (mile), continuous variable

Aggregate Type of chip: SC11 and SC16, categorical variable

Direction Direction of road: increasing ‘‘A’’ and decreasing ‘‘B’’, categorical variable

Sensor Position The position of testing laser sensor: left wheel path ‘‘L’’ and right wheel path ‘‘R’’, categorical variable

TABLE 4.8
Model Parameter Estimation

Variable Estimate Std. Error t-value p-value

Intercept

MPD

Std Dev

AADT

Truck

Speed

Length

Aggregate-SC16

Direction-Decreasing

Sensor Position-Right Wheel Path

Intercept

MPD

Truck

Length

Intercept

MPD

Length

Intercept

MPD

Initial Model (R2 5 0.726)

72.705

9.665

22.231

-0.001

-0.010

0.087

-0.389

0.427

0.474

-1.061

5.750

3.808

12.587

0.001

0.003

0.070

0.162

0.820

0.741

0.826

12.644

2.538

1.766

-0.912

-3.792

1.248

-2.394

0.520

0.639

-1.284

,2*10-16

0.014

0.084

0.366

0.0004

0.218

0.021

0.605

0.526

0.205

Final Model 1 (R2 5 0.696)

78.023

13.602

-0.011

-0.172

3.245

2.429

0.002

0.108

24.042

5.600

-5.928

-1.587

,2*10-16

6.73*10-7

1.99*10-7

0.118

Final Model 2 (R2 50.505)

67.063

20.536

-0.270

3.372

2.692

0.135

19.886

7.630

-2.002

,2*10-16

2.84*10-10

0.050

Final Model 3 (R2 5 0.471)

67.523

19.098

3.451

2.660

19.568

7.179

,2*10-16

1.47*10-9
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0.6797 because some variables in the initial model
were removed. The final model can be expressed as
follows:

MSQA~78:023z13:602|MPD{0:011|

Truck{0:1716|Length ð4:1Þ

in which, MPD stands for Mean Profile Depth, Truck
is the number of truck in AADT, and Length is the
length of sealed road.

The coefficient of MPD is 13.6, meaning that with
other variables remaining the same, one-millimeter
increase in MPD will produce an increase of 13.6 in
MSQA. Regarding Truck variable, one unit increase
in the number of truck will decrease MSQA by 0.011
when other variables are kept constant. The last variable
is Road Length, the coefficient of which indicates that
with other variables staying the same, if Road Length is
increased by one mile, the MSQA will decrease by 0.172.
In sum, higher MPD tends to produce better MSQA,
while more truck and longer sealed road seems having
lower MSQA.

Another situation may arise that traffic data is not
available to predict MSQA, so model without using
Truck variable as one explanatory variable was devel-
oped as well. As shown at the bottom of Table 4.8, this
model has a R2 equal to 0.505 and MPD and Road
Length are found significant explaining MSQA. There-
fore, MSQA can be predicted by MPD and Road
Length with the following equation:

MSQA~67:063z20:536|MPD{0:270|Length 4:2ð Þ

where, MPD stands for Mean Profile Depth and
Length is the length of sealed road.

When MPD is only included to predict MSQA, the
model equation becomes:

MSQA~67:523z19:098|MPD ð4:3Þ

where, MPD stands for Mean Profile Depth. This
model has a R2 equal to 0.4705.

Finally, it should be mentioned that MSQA ranges
from 0 to 100, so any prediction by the developed
models outside this range is meaningless. As mentioned
earlier, great variability of MPD was found in those
chip seal projects with MSQA equal to 100 was. There-
fore, the model developed in this study can only be
served as a reference to identify the potential relation-
ships among different variables.

5. FINDINGS AND RECOMMENDATIONS

5.1 Main Findings

Ride quality and safety are two critical pavement
performance measures that have been widely used to
evaluate the quality of new pavement. The former is
defined in light of pavement smoothness; the latter
is defined in light of pavement friction. Pavement
smoothness does not change much before and after chip

seal, in particular single chip seal. However, chip seal
premature or early failure is commonly accompanied
by excessive aggregate loss or bleeding, or both, which
will undoubtedly affect the surface frictional charac-
teristics of chip seal. The surface of a failed chip seal
tends to become slippery, leading to very low surface
friction. Therefore, surface friction can be utilized as a
performance-focused measure for assessing the quality
of new chip seal.

INDOT conducts pavement friction testing in acc-
ordance with ASTM E274 (2015). This test requires
intermittent acceleration or braking to adjust the speed
of test vehicle, which may impose significant impact
on the traffic flow conditions and safety. In addition,
this test cannot provide a seamless coverage of the road.
Nevertheless, pavement friction varies with surface
texture, test tire, presence of water, and test speed.
When conducting friction testing at standard test con-
ditions, surface texture becomes the dominant factor
affecting pavement friction. Technologies are currently
available to provide continuous texture measurements.
It is advisable to use surface texture, instead of friction
for quality assessment or assurance.

Texture depth, spacing, and shape may be used to
fully characterize the geometrical properties of texture
profile. To predict wet pavement friction, however, the
mean profile depth (MPD) of macrotexture was found
to be the best depth parameter. Field test results indicate
there exists a strong exponential relationship between
MPD and friction, and MPD and friction variations
follow a similar trend. It is evident that MPD is the
best macrotexture metric to assess the surface friction,
and therefore the quality of chip seal.

Field visual inspection revealed that bleeding and
tracking are commonly found in the wheel paths, either
in one wheel path or two wheel paths. Nevertheless,
there are evident differences between the texture charac-
teristics in the right and left wheel paths, due to the
spatial variability of texture or the nature of pavement
surface. Cumulative frequency distribution (CFD) pro-
vides an easy way to visualize large texture data sets
and detect the small differences in the distribution of
texture measurements.

5.2 Major Recommendations

To advance the concept of MPD-based chips seal
QA towards implementation, the following recommen-
dations may be used as guidance for test system setup
and field testing:

N Use of two point lasers, one for each wheel path, is
needed and anticipated to acquire the necessary informa-
tion for evaluating the characteristics of texture profiles
and capturing the spots of bleeding or tracking in both
wheel paths.

N It is rational to perform texture testing in both direc-
tions for quality assurance of chip seal. However, texture
measurements made in one direction can provide suf-
ficient information for the quality assurance of chip seal,
which may be justified if resources are limited.
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N Chip seal in the driving lane may experience higher
variability than that in the passing lane. Therefore, the
texture depths in the driving lane may yield more strict
standards for quality assurance of chip seal.

N The current two QA inspections performed after one
month and 12 months of service can be combined into a
single, one-time QA inspection that should be conducted
after the first snow season and can ensure both safety
and quality. However, visual inspection is still necessary
to identify problems earlier when corrective actions can
still be taken and avoid the consequence due to immediate
and dramatic loss of surface friction. It is recommended
that visual inspection should be conducted before apply-
ing fog seal.

N Chip seal QA can be measured in terms of the macro-
texture metrics such as MPD and attribute percentile
values. Although three equations have been developed to
accomplish this, Equation 5.1 may yield the best estimation.

MSQA~78:023z13:602|MPD{0:011|

Truck{0:1716|Length ð5:1Þ
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About the Joint Transportation Research Program (JTRP) 
On March 11, 1937, the Indiana Legislature passed an act which authorized the Indiana State 
Highway Commission to cooperate with and assist Purdue University in developing the best 
methods of improving and maintaining the highways of the state and the respective counties 
thereof. That collaborative effort was called the Joint Highway Research Project (JHRP). In 1997 
the collaborative venture was renamed as the Joint Transportation Research Program (JTRP) 
to reflect the state and national efforts to integrate the management and operation of various 
transportation modes. 

The first studies of JHRP were concerned with Test Road No. 1 — evaluation of the weathering 
characteristics of stabilized materials. After World War II, the JHRP program grew substantially 
and was regularly producing technical reports. Over 1,600 technical reports are now available, 
published as part of the JHRP and subsequently JTRP collaborative venture between Purdue 
University and what is now the Indiana Department of Transportation. 

Free online access to all reports is provided through a unique collaboration between JTRP and 
Purdue Libraries. These are available at: http://docs.lib.purdue.edu/jtrp 

Further information about JTRP and its current research program is available at:
http://www.purdue.edu/jtrp 

About This Report  
An open access version of this publication is available online. This can be most easily located 
using the Digital Object Identifier (doi) listed below. Pre-2011 publications that include color 
illustrations are available online in color but are printed only in grayscale. 

The recommended citation for this publication is: 
Zhao, G., Li, S., Jiang, Y., & Lee, J. (2018). Quality assurance procedures for chip seal operations using 
macrotexture metrics (Joint Transportation Research Program Publication No. FHWA/IN/JTRP-
2018/12). West Lafayette, IN: Purdue University. https://doi.org/10.5703/1288284316779 
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